PHYSICAL REVIEW D, VOLUME 58, 114501

Resummation of cactus diagrams in lattice QCD
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We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge-
invariant diagrams in lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our
resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this
expansion yields results remarkably close to corresponding nonperturbative estimates.
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[. INTRODUCTION Cactus resummation may be applied either to bare quan-
tities or to quantities which have been calculated to a given

Ever since the earliest days of lattice field theory, oneorder in perturbation theory; thus contributions which are not
problem present in most numerical simulations has been thicluded in the resummation can be reintroduced in a sys-
calculation of corrections induced by renormalization ontematic manner.

Monte Carlo results. Although this notorious problem has In Sec. Il we present our calculation, leading to expres-
not as yet been adequately dealt with, several methods ha@ons for a dressed propagator and dressed vertices of inter-
been used to address it: To begin with, perturbation theor@st; some derivations and technical details are relegated to
provides in principle a methodical means of calculating, orthe Appendixes. In Sec. Ill, we proceed to use these expres-
der by order in the Coup”ng, renormalization functionsy Op_SionS to calculate various renormalization functions and
erator mixing coefficients, etc. Its drawbacks lie in its cOmpare our results with other methods: We find a remark-
asymptotic nature and that it is a formidable task on theable improvement in many cases.

lattice, which places severe limitations on the order to which

it can be carried out; indeed, at present, exact calculations in Il. CALCULATION

perturbative lattice QCD reach only two looffer two-point
diagram$ [1-3] and three loop$for vacuum diagramd4].
Various nonperturbative, numerical approaches to renormal- Consider the standard Wilson action for $( lattice
ization functions have also been devised and there has be@auge fields:
recent progress both in their range of applicability and in

their precision[5-7]. Finally, much effort has also gone in

studying improved action&vhich may, among other advan- S=
tages, show improved renormalization behayi@,9] and

improved or boosted perturbation thed@0].

In this paper, we present an improvement of lattice perUy,, is the usual product of link variables around a
turbation theory, which results from a resummation to allplaquette in theu-v plane with the origin ak; in standard
orders of a certain class of diagrams, dubbed “cactus” dianotation it reads
grams. Briefly stated, these are tadpole diagrams which be-
come disconnected if any one of their vertices is removed
(see Fig. 1 Our original motivation was the well-known a —a
observation of “tadpole dominance” in lattice perturbation A u=AxuT @
theory (see, e.g.[11]). This observation must clearly be
taken with a grain of salt: One-sided inclusion of tadpoles
can ruin desirable partial cancellations between tadpole and
nontadpole diagrams; worse, their contribution is gauge de-
pendent. The class of terms we propose to resum circum-
vents the latter objection since, as we shall see, it is gauge
invariant; it also overcomes the former objection in known
cases.

A. Dressed propagator

> Ret(1-UY ). (1)

X, v

&

U E”V: eigoAx,MeigoAx+ rre” i90AK+ vu@” i90Ay, v,
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0556-2821/98/58.1)/11450112)/$15.00 58 114501-1 ©1998 The American Physical Society



H. PANAGOPOULOS AND E. VICARI PHYSICAL REVIEW D58 114501

By the Baker-Campbell-HausdofBCH) formula we have  Let us see how such diagrams will dress the gluon propaga-
- ) ) tor; we write
UX SV eXp[IQO(AX,p,—’_AX+,u V_AX+V,U._AX,V)+O(gO)}

=expligoFy.,., +iggFi, HigoFio,, + O(gD)}. (3)

X, v X, v X, uv

——— o —— | oo - (4)

The diagrams which we propose to resum to all ordersvhere the one-particle irreducible piece is given by the re-
will be cactus diagrams made of vertices contalrﬂﬁ@ cursive equation

.- QO
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«
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Now, the fact that the vertices involved in the above contain Gri& implies that the longitudinal parts of all propagators
will always cancel. As we will see, this fact will lead to the result that the effect of dressing is the same in all covariant gauges.
We will thus denote by a thickthin) solid line the transverse dressézhre propagator.

From Eq.(5) there follows
(6)

—o— = w(go) -
Indeed, the dressed propagator will become a multiple of the bare transverse one, where the(éagterill depend ongg
andN, but not on the momentum. Let us now turn the diagrammatic relati®nss) into an algebraic equation fav(go);
from Eq. (4) we have

_—— (1 + w(go) + w(go)* + - ) - 1= 110(90) @

and from Eq.(5) we find

_.w(go)zg._1_+QQ.;+M.;+... (8)

1= w(go) [1 = w(g0)l” [1 ~ w(g)P®

It is crucial to verify at this stage that all diagrams contained above appear with the same combinatorial factors as in the
ordinary perturbative expansion; this is indeed the case.

To proceed, we must evaluate the generic tadpole appearing iB)this comes from am-point vertex of the action, in
which n—2 lines have been pairwise contracted. Before contraction, the vertex reads

g2 > ('go)ntr{(Fil,)w)n}

Jo x,uv

_(igo)"
- n.S XE Aoy A0 91, AT (02) ~ Gu, AL (G0 ][O A(Gn) = G, A(G) [/ I Xr{ T 2. . Tonp - (9)
0 X.uv

[&,L:Z sin(,/2)]. At contraction there will ber{—2)/2 loop integrations giving

202 1
4y Sm_ —
Jd q Elz > (10)

(2m)*
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For the contraction of the SB) generators we first define and evalu&ten;N), which is the sum over all complete
pairwise contractions of ff#1T22--T?n}:

F(nN): 1 2 S S S tr{TP(al)TP(az), ,,TP(an)} (11)
' 2" 2(n/2)' Pes, 18,7838y an-18n

[F(2n+1;N)=0; S, is the permutation group of objectd. In Appendix A we calculate the generating functionFdi;N):
* Z" n
G(z;N)= E —F(n;N), whenceF(n;N)=—-5G(z;N)|,=0- (12
n=o N! dz
We find
G(z;N)=eZN-D/@N 1 (_72/9) (13)
(L are Laguerre polynomialsin the present case, two legs are left external, so that the color contraction gives

nF(n;N)

Substituting Eqs(10) and (14) in Eq. (9), we obtain, for the tadpole,

(igo)" ~ . . . _ NF(n:N) (1|02
> f da;dda[ 01, A3(A1) — 01,A% (A1) 1[02,A3(d2) — G2,A7 () ]! 92

nigo v 2(N*-1) |2
- [y
We can now sum up all terms in E¢B); we obtain
g = %, [1—W(gt)](”2)’2 (rf(—igi;)!);g N21—1F(”;N)<%)(n_2)/2
:[nio [2—2v:-(g0)]”/2(ii?)nF(n+1;N)}%[Z_ZW(QO)P/2+1' (16)

Comparing with the definition oB(z;N), Eqg.(12), we see that the expression in curly brackets above is si@plg;N), the
derivative ofG(z;N). Equation(16) now reads

2/N2
, go(N“—1)

2G'(ZN)| 2= (ig g2 2w(gg)1¥2= — — 7 17

From our result foiIG(z;N), Eq.(13), we see that

, 2 N—1 22 22 via
2G'(z;N) =¥ (NN — —— L§_1< = E) —2L§_2( -5/l -3 (18)
This allows us to make explicit Eq17):
N—1 g5(N2—1)

T v Lh_l(u)+2Lﬁ_2(u)}= OT, (19

2
u(go)= %
o 4[1-w(go)]’
Givengg, N, this equation can be solved numerically fdigy) and, subsequently, fav(g,). The region ing, for which
a solution exists contains the whole range of physical interest. Indeed one finds a solution in the lseg@m]@/:bl’z

=3.23 forN=2 and Osggs 1.558 forN=3. In Figs. 2 and 3 we plot the left-hand side of EfQ) versusu, for SU?2) and
SU(3), respectively.
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FIG. 2. Plot of the left-hand side of E(L9) versusu, for SU(2). The solid part of the curve identifies the intervalggfvalues for which
a solution exists.
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FIG. 3. As in Fig. 2, for the case of 3B).
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B. Vertices from the action

The three-point vertex of the action can be dressed to all orders in a manner similar(&.Bte have

{ _ { B A %m+ 20

The calculation is described in Appendix B. The result turns out to be very simple:

{ - -< (1= w(g0)) 2D

wherew(gy) is the quantity calculated previously.

Vertices with more lines can be treated similarly; however, the dressed vertex in these cases is not merely a multiple of the
bare one, which tends to complicate matters somewhat. Since we will not need such vertices for the numerical results of Sec.
[ll, we only present some relevant formulas in Appendix C.

C. Other operators

Various lattice operators can be dressed by the same procedure. Let us take as an example a typical operator involving
gluons:

0= tr{U Uy --U}=2) tr{el9o}, (22)

where the sum runs over the Lorentz indices involved. Using the first order BCH expansiQn fe¥ can write, once again
for the two-point tadpole built out of an-point vertex,

%_ 4ig)™ nFN)
S B TS s R @3

Here,« is the value of the one-loop momentum integration coming from the contractiQwath itself; it is a pure number
which depends on the operator under consideration. For example,

O=S§, a=z, as bhefore, (24
0= 2 &""7r{Uy U,y a@=1, (25)
o V,p,0
3 3 (’:‘12612
— _ 4 pv
O—EP (Ul Usp Uepulh @=35- 5553 f d ?—0.85332, (26)
and so on. The complete resummation of cactus diagrams then leads to
—0— — —— + @ 1 + %— ; +
' 1 — w(go) [1 —w(go)]?
N-1 1
= —®— . g *WD/CN) " pL (z)+ 23 x] C—_

N i@ 2@ WA @7
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It turns out that three-point bare and dressed vertices areg Ba

related by the same proportionality factor as the two-point,; ZG'(ZN)+ 52—+ 2Gpg(z;N)
; N 2(N“—-1)

vertices, Eq(27).
For the topological charge density operator of EXp) an

2=(igg)/[2— 2wy (gg)] 2

2_
alternative resummation is possible by using the BCH expan- = _ N"—1 , (33
sion as follows: 4
where
wreotefU, U -
L2, & Ul o[ B PN (34)
9= |2N T NZ=T

= > e"tr{expligoF x4 €XigoFx p0) . (28)

wvp.o It is straightforward to solve Eq(33) numerically for

anr(go)-

We conclude this section by noting that the extension to
vertices with fermions is immediate. First of all, vertices
coming from the Wilson fermionic action stay unchanged,

since their definition contains no plaquettes on which to ap-

O— = —&—[1 - w(g)) (29 ply the linear BCH formula. We 5viIICIsee how this affectsp

corresponding renormalization functions in the next section.

. ) For more complicated fermionic vertices, such as those of
The square in the above expression can be traced to the faffe clover action, cactus resummation proceeds in precisely
that the operator is composed of two mutually orthogonalne same manner as Eqg3), (27).

plaguettes.
Cactus resummation can be also used to estimate the per-
turbative vacuum expectation value of an operator:

Keeping the first order terms i, ,, andF, ,, the complete
resummation leads to the simple result

IIl. SOME APPLICATIONS

In this section we apply the resummation of the cactus
diagrams derived for the Wilson action to the calculation of
Q — ® + Q + 8 + (30) the renqrmalization of some Ia;tice_ operators. Ap_proximate
tte expressions for these renormalizations on the lattice are ob-
tained by dressing the corresponding one-loop results. We
will consider here operators whose anomalous dimensions
are zero. A consistent, as well as physically motivated,
12 means of implementing the cactus dressing is to apply it to
=G (L. N) (31)  the one-loop difference between lattice and continuum con-
(1 — w(go)]"/?’ tributions that determine the renormalization, and not only to
the lattice part. Cases with nonzero anomalous dimension
D. Other representations can be dealt with in an analogous manner, by setting the

. i scaleu=1/a and dressing the finite renormalization coeffi-
The calculation performed above can be generalized tQiants as before.

encompass several other cases, e.g., operators involving ag 5 first example we consider the calculation of the lat-

higher representations for gluons. To illustrate this, we cons. ot 2 : ;
. ; . L tice renormalizatiory of the topological charge densit
sider a class of variant actions proposed some time 8o (o) polog 9 y

This can be shown to equal

operator
B 1 ) 4
S== > [1-=1trU,,, 1 o
255G\ T N T T Q)= za 352 ,L,V,,),Epil e*"*tr{Uy ., Uy o'
1 (35
+ % Z ( 1— m trAUX,W) . (32)
X Z(g?) is a finite function ofg3; it approaches 1 in the limit

go—0, and is much smaller than 1 in the regigg=1,
Here 8 and 8, are adjustable parameters anguy ,, de-  where Monte Carlo simulations using the Wilson action are
notes the trace of a product of links in the adjoint represenactually performed. A nonperturbative numerical calculation
tation, around a plaquette. using the heating methofll3] has produced the estimate

The calculation proceeds as before; the one new ingredj-14,15

ent we need ig=q(n;N), the sum over all complete pair-
wise contractions of {f7?17%---7%n} (72 are generators in Z(g§=1)=0.1q1) for SU(3). (36)
the adjoint representatipnin Appendix D we compute
Gag(z;N), the generating function foF »g. In terms of In this case few terms of the perturbation theorygﬁ‘ncan
Gagj» the equation for the factaw,,{go) which dresses the hardly provide an acceptable estimateZﬂgg) for ggzl
propagator now becomes without some kind of resummation.
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TABLE I.2For the SU2) lattice gauge theory we list the esti- However, substituting the value @2 corresponding t(gg
mates ofZ(gg) as obtained by the heating methid®8] (h.m), by 4 = . . 2
the standard one-loop perturbative expangjon,), and by cactus ;1_’(;249 V\;ulcgslé Irr;fcqﬁ(\?v?}soeng];vnogfl‘g (:)?;?rllr%(nio-i)i[)) ap-

dressing, Eq(38), of the one-loop calculatiofd.p.t). - ' o ;
proximation. Similarly, a change of coupling constant and

B=4ig? h.m. p.t. dpt. momentum scale, in the manner of Lepage and Mackenzie
[10], also leads to a wider discrepancy in this case: indeed,
2.45 0.202) 0.125 0.219 the corresponding value af(q*) (defined in[10]) turns out
25 0.221) 0.142 0.233 to be too large.
2.6 0.2%2) 0.175 0.259 One can also apply cactus resummation to the lattice
2.8 0.322) 0.234 0.305 renormalization of fermionic operators. Let us consider the
3.0 0.332) 0.285 0.347 local nonsinglet vector and axial curreit§ = y\%y, and

AfL:ZAayﬂyw. The lattice renormalizations of these op-

2 2 ; PP
In perturbation theor)Z(gS) has been computed tb(g(z)) erators,Z,(gg) and Z,(gg), respectively, are again finite

[16] with the result functions ofgy. In perturbation theory and for $8) one has
[19]
Z(g3) = 1+2:95+0(9p), .
L1 1 Zya=1+2y,a951 O(9o), (41
2=N\zve 8 202 0'1549% ' (7 \wherez,=—0.17 andzy=—0.13. Thus, ag2=1 one-loop
_ perturbation theory giveg,(g3=1)=0.83 andZ,(gi=1)
Numerically z;=—0.908 for SU3) and z;=-0.536 for  ~0.87. For these fermionic operators, one may use cactus

SU(2). So perturbation theory t®(g3) would give Z(g3)  resummation to dress the gluon propagators appearing in the
=0.092 for SU3), which is very far from its actual value, diagrams contributing to one-loop order, according to Eq.
Eq. (36). In order to obtain a better approximation, we per-(7). This procedure leads to

form a cactus dressing of the one-loop calculation. The tree

order is dressed by mere use of E29). One can now dress gé

the one-loop contributiondor details of the standard pertur- Zya=1+2zyp W() (42
bative calculation see Reffl6, 17]). Using Eqgs.(7), (21), Y
and(29), and a simple combinatorial counting applied to the

2__ H H ~ ~
diagrams contributing t@(g2), one arrives at the expression At 90= 1, this givesZ,=0.77 andZ,~0.83. One may com-

pare these numbers with those obtained in nonperturbative
N2—3 ) calculations based on Ward identit{&. The only limitation
Z;+ 1IN Yo- of this method is due to scaling corrections, which turn out to
2 : . .
(39) be rathgr large agole in the case of the Wilson lattice
formulation. Depending on the matrix element one looks at,
The quantity (N?—3)/12N must be added ta,; to avoid at ggzl one finds values ranging from 0.57 to 0.79 Ky
double counting, since such a contribution is already incorand from 0.72 to 0.85 foZ , [20—27 (see also Ref.23] for
porated in the dressed tree-order approximation. Solving Ec review of these resultsOther methods of improvement

Z(g3)~[1—-w(gp)1?+[1—w(go)]

(19 for N=3 andgy=1 one finds (see, e.g.[10], and also[23] for a partial review, using
various boosting procedures, result in numbers ranging from
1-w(go=1)=0.749775. (39  0.63 to 0.71 forz, and from 0.72 to 0.77 foZ, . Hence, a

. . conclusive comparison is not possible in these cases. A bet-
Thus from Eq.(38) one obtamsZ(gézl):o.l%, which ter numerical sitFl)Jation occurs 5vhen one considers the clover
compares very well with the numerical rest®). Further  ion[g], for which scaling corrections are largely reduced
confirmation of the validity of the approximatid88) comes i, the region where Monte Carlo simulations are performed
from a comparison W'gh available data for @Jin the range 54 precise estimates can be obtained using the Ward iden-
2.45=p=<3.0 (B=4/gy) obtained by the heating method jsies (see Ref[23] and references therdimn application of
[18], as shown in Table I. The agreement is remarkable. oyr cactus resummation to the clover action would require

We wish to point out that other improvement recipes,ine dressing of the new fermion-gluon three-point vertex.
such as those proposed in RE0], consisting in a redefini-  This point is under investigation.

tion of the bare coupling, do not help in this case. For ex- |, conclusion, the above examples show that the resum-

ample one recipe entails the use of mation of cactus diagrams leads to a general improvement in
2 the evaluation of lattice renormalizations based on perturba-

=2 Y (40) tion theory. A combination of this method with improved
3 (Trub) actions is expected to give a reliable evaluation of renormal-

ization functions, which can complement corresponding non-
(whereU" is the plaquetteas the expansion parameter for perturbative estimates. We hope to return to this issue in a
N=3. In many cases this recipe represents an improvemerfiuture publication.
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APPENDIX A: CALCULATION OF G(z;N)

We wish to calculaté(n;N), the sum over all complete pairwise contractions {T#T22---T?n}. For evem, F(n;N) is
defined by

F(n;N)= ! z E R N | tr{ TPAUTP(@2). .. TP(@n) (A1)
y 2n 2(n/2)| PE% aja,“agza, an_ 12y

[F(2n+1;N)=0]. S, is the permutation group af objects, andl® are an orthonormal basis for $\) in the fundamental
representation, fT3TP} = 1 5P,
We define

M=@T?2, @#*=620* (a=1,..N°—1), 6*eR. (A2)

ThenF(n;N) can be written as
1 1
F(n;N)=Nf I1 daae‘az/ztr{M”}=Nf [dM]e M*tr{M™, N=f [dM]e~ M. (A3)

[The normalizationV is redefined below as necessary, to ensure E{@;N)=N remains validl By definition, [dM]
=II1,d6? is the integration measure over traceless Hermitian matrices. When the integrand is invariant under similarity
transformations, as is our case, “angular” integrations can be performed, leaving behind an integral bveigibevalues ;

[24]:

F(n;N)=/%.f (H dxi)[i];[j (xi—xj)z}a(Ei )\i)exr(—Z x?)(Ei x{‘). (A4)

At this stage, it is convenient to introduce the generating functiori-{or;N):

* n n

GZN=3, F(MN), F(N)= TGz 0. (a5)

By Eg. (A4) we have

G(z;N)=2, f H,de,m (xk—mz}&(; xm)exp(—g Na+ 2z

IT.d\;
=N | L2 TT = ND2[8 2 A lexp — > A2+20y]. (A6)
N k<l m n
To simplify the exponents we shift theés so as to keep their sum equal to zero:
NN z z
1mMTNT 2
’ Z H
A Z)\i'i‘m (i#1), (A7)
I1;d\, ) z 2 _—
G(z;N)sz — T = 2 TT [+ 5= |8 2 N Jexp =2 N2+ZA(N=1)/(4N)|.  (A8)
N | 1#k<i k#1 2 i i

The & function can now be easily eliminated, using the exponential represenfatiorexp(a;\;):
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daILdki

k#1

G(z;N)=Ne22(N_1)’(4N)f (x+ -y exp( E(A—la/Z)Z—aZN/Z

IT.d\;
— N eZ2(N=1)/(4N) f il
Nef N

IT v }

1#k<I

II o

1#k<lI

(7\+Z 7\)
ki | th2 Tk

exp( -3 x?). (A9)

Let us isolate the integral over;(i #1):

G(Z;N):NeZZ(N—l)/MN)f d)\le—xfe(xlﬂ/z)z

'“d)\ (H (N — Z)exp(—z x{zﬂ . (A10)
: N =\ +2/2

The integral in square brackets, involving the Vandermonde determiban(\,—\|), equals[24]

N-1 j
1 V4 . _ 2 d)! )
N ,Zo $? +§), Bi(x)=(2)j1\[m) ~Y2ex T2 _EJ e . (A11)
We thus obtain
, N-1 d\i 2
N — zZ(N—l)/(4N)f —Na(\1+2/2)? T At z? | T A +z2)?
G(z;N)=e dx,e” Mg ,Zo Zij!\/;e an, e
- 2
2
—¢? (N—l)/(4N)f [
E;) ZJJIJ__
N—-1 22
2(N—1)/(4N) o _ =
e?( > Lj( 2)
j=0
22
_ezz(Nl)/(4N)LJNl< _ ?) (A12)

in terms of the HermiteHKi;) and Laguerrel(g) polynomials.

APPENDIX B: PROOF OF Egq. (21)

To prove Eq.(21), we must first evaluate theloop tadpole diagrams appearing in EQ0). Contracted legs come from

F{,. while external legs necessarily originate fréfi), andF{?) . The corresponding vertex comes from
S 1 expligoF )] (BD)
95 =

taking 2j +2 powers from the exponent. We have
2l(igo)® 125 +2 . } (1)1'
%é { G+ v P+ a5 (B2)

The first factor above is the ratio of Taylor coefficients for the vertices on the left-handls#®) and RHS; the factor in
square brackets is the outcome of color contractions; the factor! (i&/#)e outcome of one-loop integrations. Combining
Egs.(B2) and (20) we find
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“ _( 1 Ggyr d* ., 2[2 — 2w(go)]/?
B {n; n! [2 — 2w(go )]/ el ,N)|z=0} (e (Vo= 1)
e 190 vy 202 — 2w(go)]?

-~ & B ™ G-

4< [ —w(go)] (B3)

In the last equality, use was made of E#y7).

APPENDIX C: DRESSING THE FOUR-POINT VERTEX

The bare four-point vertex contains parts coming frofi§t) F(") F& RO b e F2) F@ L and t{F() F3LL In
general, these are expected to dress differently, thus yielding a dressed vertex which is not merely proportional to the bare one.
In all other respects, this calculation is a direct generalization of the three-point vertex case.

We will not present the final expression for the dressed four-point vertex, since we will not be needing it in Sec. Ill; rather
we evaluate the one new ingredient present in this case: the sum over all pairwise contractihlﬁéﬁfyﬂ‘}, with four legs

left external. The result can be written as

1\ (=42
2 e e rees ©

whereT2b¢d s necessarily of the form
TaPCd= o tr{ TA(TPT T+ permutationy} + B( 63° 59+ 526524+ 52950, (C2

We must computer and 3 for genericn, N.
The tensors multiplyingr and 8 above are in general independent, except for the ddsed, N=3. One way to see this
is by taking the scalar product d?°% (a real tensorwith itself:

N4—6N2+18+ 2N2-3 e
NI NZ+ 1) B NN TR

2N?-3  |\? (N?-9)(N?-4)
BroNNzTD) @) T eIz |

a2

Tabcd-l—abcd: 3(N2_ l)(N2+ 1)

=3(N?—1)(N?+1) (C3

The above can vanish only fté=2 or N=3, if 3=—1 a.
To computeax and 8 we further contracT2P¢d with either :5°759" or :tr{ TST'TI9TM:, to arrive at two relations fow and

B:
41(N°-1) ) )
T[(ZN —3)a+2N(N?+1)B]=n(n—2)F(n;N),
41(N*-1) ) ) n _ n(2N2—4+n) _
W[(N —6N2+18) a+AN(2N?~3) B]= 5 F(n+2N) - ——=—— F(mN)

n(n—1)(N?+n—23)
8N?

F(n—2;N). (C4)

The solution of these linear equations gives the required expressionsaiod 3.
ForN=2,N=3, Egs.(C4) are linearly dependent, as expected. Since the two tens®f8ifare proportional to each other
in this case, we can set=0. Then, from Eq(C4) we find

B n(n—2)F(n;N)
T 41(N?=1)(N%+1)

a=0, (N=2 or N=3). (C5)
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APPENDIX D: RESULTS FOR THE ADJOINT REPRESENTATION

We calculate

1
FAdj(n;N): on 2(n/2)! Pgsn 5a1a25a3a4' ""Oa,_ja, tI’{TP a)7P(@). . (an)}_ (D1)

Here, 72 denote sull) generators in the adjoint representation. We can relate them to the fundamental representation using the
standard decomposition

(N)®(N*)—(N?—=1)®(1). (D2)
In terms of the generators, this says that there exists a unitary niatsixch that
UT(T2®@1+10T**)U=T42®(0). (D3)
Using anN?x (N?—1) projectorP [the (N°—1)x (N?—1) unit matrix augmented by a row of zelps
T*=PTUT[T221+1a(T3)* JUP. (D4)

Substituting this in Eq(D1) and making use of EqA3) we find
1 2 1 2 " n
Fag(MN)= — J [T dere ar{(Me1+1eaM*)M = — J [T dere= 9723, tr{M™Hr{M"" ™} (D5)
N a N a m=o0 \M

The corresponding generating function is now given by

n

Fag(n;N)= GAdJ(Z N) =0,
*© Zmtnz 1
(z'N an— 62/ M N1 M "2
Gag(z:N)= n};‘ o ingl NJH dgre” M r{M"2}
IMadN

:2, [H (A=) } (E A )exp( 2 N2+2Z(N+N) |. (D6)

A somewhat tedious integration ovef,, by analogy with Eqs(Al11), (A12), gives
3 ul-5]f
nco| " 2
N-1N-1-n 2\ n+2m >
z 1 7
- - — n+2m+1 _ -
ZnZl mE:O ( 2) m! (n+m)! LN“ml( 2)] (D7)

From this point on, dressing the variant action propagator proceeds just as i8E{%5), leading to

72
Gagi(ZN)=G(2z;N) + eZZ<N2>’<2N>{ { Lﬁ,l( - 5)

0

1 (i90)"
anr(go): HZO [2_2wvar(go)]n/2 ?_]? (%F(n"‘l,N)'f'%FAdj(n"‘l,N))]
2(igo) 112
XS (2 2l G0) Y24 1. 08

Substituting the definitions dB(z;N) andGag(z;N) in the above immediately produces Eg3).
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